Draft Version 1.0 Published By Naval Air Systems Command Human Systems Department, AIR 4.6 AUG 2017 NOTE: This is a DRAFT version of the Human Systems technology/financial roadmap. It is a living document, and is subject to change both in form and content. This edition is based on the AIR 4.6 analysis directed from the AIR 4.6 offsite performed Jan 2017. Subsequent editions will continue this progression based on additional analysis. ## HUMAN SYSTEM TECHNOLOGY ROADMAP AUG 2017 SNAPSHOT Disclaimer: The information about to be presented affords industry partners insight into on-going and pending acquisitions. Significant portions of the information are planning in nature and are subject to change throughout the acquisition planning and acquisition strategy approval process, and in response to NAVAIRSYSCOM, DASN(A&LM) and DPAP peer reviews. 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 | | | | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | |--|---|--|---|---|---|---|--|---------------------|------|------|---------------------------------|--| | CC1 - Human Systems Engineering,
Integration, and Acquisition | CC1 - Research, design,
and development of
integrated Human
Systems products | Develop tools and
methodologies for
deriving and managing
SoS requirements Human performance
metrics and training
solutions that support | | | SoS req | les to derive and manage
uirements
etrics and training solutions
pport IWC |]
s | | | | Funded Capal Unfunded Potentia | GEND bility Enhancement I Capability Development Tech Dev (Unfunded) | | nan Systems
ation, and Ac | | Integrated Warfare
Capabilities (IWC) | | | | | | | | | Joint | t Initiative | | Integra | | performance analysis
tools | | | techniques and tune | ion approach using down-s
ed hyper parameters on imi
datasets (TSD) | | | | | | | | | CC2 - Human-Machine
Interfaces | Enhance collaborative
and autonomous
unmanned surveillance
and strike capabilities | during UAS Oper. Identification and Defini System Air Vehicle O Metrics (US - Training Experimer | Maintaining Attention
ations (TSD - SBIR)
ition of Unmanned Aerial
perator Performance
(TSD-BAR)
nation & Simulation (US-
(TSD-CIP) | | /igilant: An Examination of | Unmanned Operator | | | | | | | | | | | | User Interface Strategie:
Training in a Simula
Management of multi
systems by a sing | s for Human-Machine Tean ated Swarm Task (TSD) iple UAV's and payload gle operator(PAX) ctors involved in operator to | n | | | | | | | | | | | | Techniques and | ethods to represent machin
approaches to represent, v
controlled/monitored unm | ary, and adapt the auton | omy of | | | | | | | | Enhance battle
management decision-
making | | | Analysis / analytic
information to ex | tools to log, store and conv
pedite decision-making an | ert very large data sets in
d reduce transmission bai | to useful
dwidth | | | | | | | | Improve mission planning and real-time re-planning | | | | | | | | | | | | | | Provide actionable tactical situational awareness | | Electronic Kneeboa | | or organizing, fusing, and n | | | | | | | | | | Improve manned platform information management and payload, systems, and vehicle control | | | (PAX | for display interaction -BAR) see computational run times hance the computational sp | | | | | | | | | | Identify all contacts
and combat
classifications; and
track and localize
potential targets at
standoff ranges | | | | | | | | | | | | | | | Construct Corresponde | ence of Physiological and S
Hypoxia (TSD-ILIR) | Subjective Measures of | | | | | | | | | Н | | Improve training
outcomes through
application of
neurophysiological
data | | | | nd objective measures of co
kload, and the associated co | | | | | | | | | | | | | | eling of cognitive neuroscie | | | | | | | | 2 | | | | | Neurocognitive and co | mpetency-based assessmer
tools | nt data consolidation and | interpretation | | | | | | Suppo | | Improve warfighter | | | | Flexibility via Working
raining (TSD) | | | | | | | | trodding | CC2 - Human
Performance
Measurement and
Assessment | performance through
application of
psychometric theory | | | | | | | | | | | | | | Enhanced techniques
for individual and team
performance
assessments | | | | ssment support capabilities
exporting performance me
measurement r | easures, metrics, methodo | | | | | | | H | | | | (EW) Tactical Decision Aid | (TACAID) (TSD-FNC) | measurement f | | | | | | | | H | | | | for Life Long Learning
ADV. TECH.) | | | | | | | | | | | CC2 - Training
Methodologies for
Distributed Team
Competencies | Develop LVC
performance
assessment
technologies and after-
action review
strategies | | | | | | | | | | | | | | Develop performance
assessment
technologies for team
integration in
distributed cross-
platform, cross-warfare | Squad Overmatch – Ta
Care (TSD- | ire Control- Counter Air (N
:
actical Combat Casualty
-ATD-Joint) | IFC-CA X) Mission Visualiz | tation Tool (TSD-FNC) | | | | | | | | | | | | urement (PM) Engine
AWTD) | Tools to define new me | asures and assessments ra
training miss | | hem for specific | | | | | | | | teams | | | Advanced methods to a | nssess instructor and/or tra
effectivene | | nce and training | | | | | | Ħ | | | | | | Develop Synthetic Crew/ | Team role player | | | | | | | | | Develop data analyses
to facilitate trainee | Environment (BE | nd Electricity Learning
EETLE) II Transition | | | | | | | | | | | | to facilitate trainee
feedback and identify
novel performance
trends | | -219TT) | Empirical Support for | the Benefits of Performano
(TSD-219TT) | e Measurement Tools | | | | | | | | | Develop scenario authoring tool sets that | | | Tools for rapid scenario | generation with appropric | nte key triggering events | o ascertain skill | | | | | | | | use training network
assets and team | 1 | | | levels | | | | | | | | Ш | | integration training | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | | A80 0 | | Develop Multi-Level Security Methods to safeguard classified information in the LVC environments Develop Mission Rehearsal Enabled Database Methods for collecting and packaging authoritative data feeds Develop tools for Enhanced Constructive Environments to support instructor inserted dynamic changes to simulated | 2016 2016 Cross Domain Marit | 2017 2017 2017 ime Surveillance and ST) (TSD-DARPA) e and Modular Entities for (TSD-FNC) | 2018
2018
2018 | 2019
2019 | Cross domain solution | ons | 2022 2022 | 2023
2023 | Funded Capal Unfunded Potentia | 2025 2025 SEND SILLY Enhancement (Copobility Development Tech Dev (Unfunded) | |--|--|--|------------------------------|--|---|--|---|----------------------------|-----------|---------------------------|--|--| | | | Security Methods to safeguard classified information in the LVC environments Develop Mission Rehearsal Enabled Database Methods for collecting and packaging authoritative data feeds Develop tools for Enhanced Constructive Environments to | 2016 2016 Cross Domain Marit | 2017 2017 2017 ime Surveillance and (ST) (TSD-DARPA) e and Modular Entities for | 2018 | 2019 | Cross domain solution | ons
d (ENG) | 2022 | | 2024
LEC | 2025
GEND | | | | Security Methods to safeguard classified information in the LVC environments Develop Mission Rehearsal Enabled Database Methods for collecting and packaging authoritative data feeds | 2016 2016 Cross Domain Marit | 2017
2017
2017 | | 2019 | Cross domain solution | ons
d (ENG) | 2022 | | 2024 | 2025 | | | | Security Methods to safeguard classified information in the LVC environments Develop Mission Rehearsal Enabled Database Methods for collecting and packaging authoritative data | Architecture and Metric | 2017 | | 2019 | Cross domain solution | ons
d (ENG) | 2022 | | | | | | | Security Methods to
safeguard classified
information in the LVC
environments
Develop Mission
Rehearsal Enabled
Database Methods for
collecting and
packaging | | | | | Cross domain solution | ons | | | | | | | | Security Methods to
safeguard classified
information in the LVC
environments
Develop Mission
Rehearsal Enabled
Database Methods for | | | | | Cross domain solution | ons | | | | | | | | Security Methods to
safeguard classified
information in the LVC
environments | National | | | | Cross domain solution | ons | | | | | | | | Security Methods to
safeguard classified | | | | | Cross domain solution | ons | | | | | | | | | | | | | 1 | - | | | | | | | | | | | | | | | _ | 1 | The state of s | | | | | | I | | | | efensive cyber training ca | 1 | | | | | | Щ | | | | | | | v-cost and scalable trainin ctrum analysis test and de | | | | | | | | | | | | | Tro | ining system Cyber monit | oring tools | | | | | | \parallel | Distributed LVC Technology | | | | | | ty vulnerability (penetration | | | | | | | \parallel | CC3 - Simulation Interoperability and | | | | Distributed Virt | ual Reality Testbed | Offensive cyber training ca | pabilities | | | | | | | | | | | Constructive Entities fo | dation of Higher Fidelity
or UAS Training (TSD-BAR) | ,
=: | | | | | | | | | technologies | | | | Designing/architectin | ng large scale tng events | į | | | i
!
!
!
! | | | 8 | | Develop interoperable
LVC and Cyber Warfare
training simulation and | | | Real-Time RF Propaga
Environments for Vi | tion Modeling in Urban
rtual and Constructive
(TSD-BAR) | | | | | | | | Adva | | D. J. | (TSD | TEMPEST Modeling an | d Blackbody Testing for
mmunication Systems (T | | | | | | | | | Advanced Training Systems Technology | | | | :
ve (LVC) Training Fidelity | ting Capabilities (IWC) F
(TSD-BAR) | identy investigation | | | | | | | | Trainii | | | Network Effects Emulati | on System (NE2S) (TSD- | | idelity Investicati | | | | | i
i
i
i | | | sys gr | | | Environment Designed | REATE) (TSD-SBIR:N142-09
d to Undertake Counter A
pentation (EDUCAT2E) (TS | 2AD Tactics Training & | | | | | | | | | tems | | models | | ibled by Automated Techn | | | | | | | 1
1
1
1
1
1
1 | | | Techn | | Develop multi-touch
interaction and 3D
models | | | | | | | | | | | | ology | | training applications | | | | | | | | | | | | | | systems and integrate into Tactical Software | | | | | | | | | | | | | | Develop multi-modal sensory simulation | | | | | | | | | 1
1
1
1
1
1
1 | | | \blacksquare | | speech | | | | | - | | | | | | | \prod | | methods to recognize
the difference between
relevant and irrelevant | | | | | | | | | | | | \blacksquare | | functionality, and computational | | | | | | | | | | | | \blacksquare | CC3 - High-Fidelity
Training Environments | Develop speech recognition, synthesis | | | | | tural language interfaces j | for training | | <u> </u> | | | | + | | | | | | | multisensory interactive d | | | | | | | | | simulation
technologies | | | | Aids (PAX) | hat support high-resolutio | n and multispectral data | | | | | | | | Develop real-time flight
aerodynamic and visual
simulation
technologies | | | Fraining Display System I
D-SBIR: N142-104)
Extended Field of Vie | Performance
w (FOV) Video Aviation | | | | | | | | \parallel | | | | Motion Fidelity Model
-BAR) | | | | | | | | | | | | fidelity trainers | 3D Interactive Aircraf | | | | | | | | | | | | | environments to design and maintain high- | | | | variou | ie engineering test beas in
is approaches to simulatio | n for training | | trainee outcomes and rigo | prous experimental meth | odologies | | # | | Create software development | | | | M&S to train and provid | database configuration de engineering test beds in | support of research effica | automated Forces
(SAF) models with
human-like
performance | | | | | | | | i
i
i
i | | | | | | Develop Semi-
automated Forces
(SAF) models with | | | | | | | | | | | | | Behavior Modeling | performance models | | | | | | | | | | | | | CC2 - Applied Human | verification, validation,
and accreditation
(VV&A) of human | | | | | | | | | | | | | | Develop standards for verification, | | | | | | | | | | | | | | performance | | | | | in data or sensory stimuli | | | | | | | | | Develop computational models of human | | Maintainer – Pr
(MAIN-PM) | (TSD-BAR) Machine learning algo | | behavior and performanc | e to recognize, | | | | | | ŭ | | | | Maintainer – Dr | oficiency Model | | | | | | | | | CC2 - O | | Develop mobile training technologies | | | | | | | | | | | | ptimi. | | performance | | OTE) (TSD-WFD:SG) | | | | | | | | | | TH pez | | Employ game-based training to improve | | of Game Features on Lea
Training (TSD-BAR)
ulti Operator Training | rning Scenario Based | | | | | | | | | ıman f | | | | | | Capabilities (TSD) | -,,-une, mgn impact | | | | | | | Perfor | | | | ı | aircraft maintainer t
Integration (H. | hrough Human Systems SI) research (PAX) echnology for Enabling D | | | | | | | | mance | | and deficiencies | | | Increase the efficiency | Advanced Adaptive Train y and effectiveness of the | | | | | | | | and I | | interventions to
remediate knowledge
and skill deficiencies | Heuristics (TEACI | H) (TSD-ONR D&I) | | Advanced Advantive Trail | sing mother delegies | | | | | | | - Optimized Human Performance and Decision Support | | Develop methods to
diagnose and deliver
instructional | Tutoring Effectively: An | g for Experiential Learning
(TSD-219TT)
Assessment of Common | g for Signal Officers | | | | | | | | | on Su | Techniques | | Proficiency Model (MI | ED-PM) (TSD-DoD S&T) | of or Signal Officers | | | | | | | | | pport | CC2 - Advanced
Instructional | | Trend Analysis (PMA | th for Tactical Training & | | | | | | | | | | | | | | | Distributed Virtu | al Reality Testbed | | | | | | | | | | | | | (P | r Virtual Environments
PAX) | | | | | | | | | | | | | Method of Intera | nining: Do Task Type and action Matter? (TSD) | | | | | | | | | | train decision-making
capabilities | | | | requirem | | - | | | | | | | | interventions into
virtual environments to
train decision-making | | | | rning and encoding conte | a presentation to learners
ent consistent with cognition | | | | | | | | | Integrate instructional interventions into | | Accelerating the Deve
Decision Making (A | elopment of Small Unit | | | | | | | Tech Dev (Unfunded) | | | | | Role of Affordance | Untethered Virtual Reality
s on Training Effectivenes
nvironment (TSD-219BAR) | s in an Immersive | | | | | | | Ollity Enhancement Capability Development | | | | | Investigating Law Cost | Intathored Vietnal Basilia | Tashualagias and the | | | | | | | JEINU |